The following was retrieved from Wikipedia, the free encyclopedia :(Paleontology) on March 22, 2020.
"Paleontology, sometimes spelled palaeontology or palæontology (/ˌpeɪliɒnˈtɒlədʒi, ˌpæli-, -ən-/), is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene Epoch (roughly 11,700 years before present). It includes the study of fossils to classify organisms and study interactions with each other and their environments (their paleoecology). Paleontological observations have been documented as far back as the 5th century BCE. The science became established in the 18th century as a result of Georges Cuvier's work on comparative anatomy, and developed rapidly in the 19th century. The term itself originates from Greek παλαιός, palaios, "old, ancient", ὄν, on (gen. ontos), "being, creature" and λόγος, logos, "speech, thought, study".
Paleontology lies on the border between biology and geology, but differs from archaeology in that it excludes the study of anatomically modern humans. It now uses techniques drawn from a wide range of sciences, including biochemistry, mathematics, and engineering. Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life, almost all the way back to when Earth became capable of supporting life, about 3.8 billion years ago. As knowledge has increased, paleontology has developed specialised sub-divisions, some of which focus on different types of fossil organisms while others study ecology and environmental history, such as ancient climates.
Body fossils and trace fossils are the principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave body fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating, which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving the "jigsaw puzzles" of biostratigraphy (arrangement of rock layers from youngest to oldest). Classifying ancient organisms is also difficult, as many do not fit well into the Linnaean taxonomy classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics, which investigates how closely organisms are related by measuring the similarity of the DNA in their genomes. Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend."
There are currently 118 known chemical elements exhibiting a large number of different physical and chemical properties. Amongst this diversity, scientists have found it useful to use names for various sets of elements, that illustrate similar properties, or their trends of properties. Many of these sets are formally recognized by the standards body IUPAC.
The following collective names are recommended by IUPAC: Alkali metals – The metals of group 1:
Li,
Na,
K,
Rb,
Cs,
Fr. Alkaline earth metals – The metals of group 2:
Be,
Mg,
Ca,
Sr,
Ba,
Ra. Pnictogens – The elements of group 15:
N,
P,
As,
Sb,
Bi.
(Mc
had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.) Chalcogens – The elements of group 16:
O,
S,
Se,
Te,
Po.
(Lv
had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.) Halogens – The elements of group 17:
F,
Cl,
Br,
I,
At.
(Ts had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.) Noble gases – The elements of group 18:
He,
Ne,
Ar,
Kr,
Xe,
Rn.
(Og had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.) Lanthanoids – Elements 57–71:
La,
Ce,
Pr,
Nd,
Pm,
Sm,
Eu,
Gd,
Tb,
Dy,
Ho,
Er,
Tm,
Yb,
Lu, Actinoids – Elements 89–103:
Ac,
Th,
Pa,
U,
Np,
Pu,
Am,
Cm,
Bk,
Cf,
Es,
Fm,
Md,
No,
Lr. Rare-earth metals –
ScY, plus the
lanthanoids Transition elements – Elements in groups 3 to 11 or 3 to 12.